Press "Enter" to skip to content

Posts published in “Medium”

94. Binary Tree Inorder Traversal (javascript)

Given the root of a binary tree, return the inorder traversal of its nodes’ values.

Example 1:

Input: root = [1,null,2,3]
Output: [1,3,2]

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [1]
Output: [1]

Example 4:

Input: root = [1,2]
Output: [2,1]

Example 5:

Input: root = [1,null,2]
Output: [1,2]

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

Idea:

Iterating method using Stack

Solution:

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[]}
 */
var inorderTraversal = function(root) {
    let stack = [];
    let res = [];
    
    while(root !== null || stack.length !== 0) {
        while(root !== null) {
            stack.push(root);
            root = root.left;
        }
        root = stack.pop();
        res.push(root.val);
        root = root.right;
    }
    return res;
}

LeetCode 46. Permutations (javascript)

Given an array nums of distinct integers, return all the possible permutations. You can return the answer in any order.

Example 1:

Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

Example 2:

Input: nums = [0,1]
Output: [[0,1],[1,0]]

Example 3:

Input: nums = [1]
Output: [[1]]

Constraints:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • All the integers of nums are unique.

Idea:

Use DFS template

Solution:

/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permute = function(nums) {
    let res = [];
    let cur = [];
    let len = nums.length;
    let used = new Array(len).fill(false);
    dfs(nums, len, res, cur, used);
    return res;
}    
    
function dfs(nums, len, res, cur, used) {
    // exit recursive condition
    if (cur.length === len) {
        res.push(cur.concat());
        return;
    }
    
    // possible solution
    for (let i = 0; i < len; i++) {
        // skip used integer
        if (used[i]) continue;
        
        // modify current state
        used[i] = true;
        cur.push(nums[i]);
        dfs(nums, len, res, cur, used);
        // recover current state
        cur.pop();
        used[i] = false;
    }
}

LeetCode 40. Combination Sum II (javascript)

Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sum to target.

Each number in candidates may only be used once in the combination.

Note: The solution set must not contain duplicate combinations.

Example 1:

Input: candidates = [10,1,2,7,6,1,5], target = 8
Output: 
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

Example 2:

Input: candidates = [2,5,2,1,2], target = 5
Output: 
[
[1,2,2],
[5]
]

Constraints:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30

Idea:

DFS

  • Important Step: sort the array
  • Create a DFS recursive and keep tracking target value and start index
    • Exit DFS recursive:
      • if (target < 0) return;
      • if (target === 0) record answer and return;
    • For loop (Possible solution) pay attention to:
      • No duplication
      • Candidates can only be used once

Solution:

/**
 * @param {number[]} candidates
 * @param {number} target
 * @return {number[][]}
 */

var combinationSum2 = function(candidates, target) {
    let res = [];
    let cur = [];
    // Important Step: sort the array
    candidates.sort();
    dfs(res, cur, 0, candidates, target);
    return res;
}

function dfs(res, cur, start, can, target) {
    // exit recursive condition
    if (target < 0) return;
    if (target === 0) {
        res.push(cur.concat());
        return;
    }
    
    for (let i = start; i < can.length; i++) {
        // skip duplicate
        if (i > start && can[i] === can[i - 1]) continue;
        cur.push(can[i]);
        // Each number in candidates may only be used once 
        // in the combination. start from i + 1
        dfs(res, cur, i + 1, can, target - can[i]);
        cur.pop();
    }
    
}

LeetCode 22. Generate Parentheses (javascript)

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

Example 1:

Input: n = 3
Output: ["((()))","(()())","(())()","()(())","()()()"]

Example 2:

Input: n = 1
Output: ["()"]

Constraints:

  • 1 <= n <= 8

Idea:

Backtracking

Solution:

/**
 * @param {number} n
 * @return {string[]}
 */
var generateParenthesis = function(n) {
    let ans = [];
    backtrack(ans, "", 0, 0, n);
    return ans;
}

function backtrack(ans, cur, open, close, max){
    // exit recursive condition
    if (cur.length === max * 2) {
        ans.push(cur.concat());
        return;
    }
    // possible solution
    if (open < max)
        backtrack(ans, cur + "(", open + 1, close, max);
    if (close < open)
        backtrack(ans, cur + ")", open, close + 1, max);
}

LeetCode 1277. Count Square Submatrices with All Ones (javascript)

Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.

Example 1:

Input: matrix =
[
  [0,1,1,1],
  [1,1,1,1],
  [0,1,1,1]
]
Output: 15
Explanation: 
There are 10 squares of side 1.
There are 4 squares of side 2.
There is  1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.

Example 2:

Input: matrix = 
[
  [1,0,1],
  [1,1,0],
  [1,1,0]
]
Output: 7
Explanation: 
There are 6 squares of side 1.  
There is 1 square of side 2. 
Total number of squares = 6 + 1 = 7.

Constraints:

  • 1 <= arr.length <= 300
  • 1 <= arr[0].length <= 300
  • 0 <= arr[i][j] <= 1

Idea:

Dynamic Programing

  • dp[i][j] := edge of largest square with bottom right corner at (i, j)
  • base case:
    • dp[0][0], dp[i][0], dp[0][j] = 1 if martix[i][j] = 1
  • The current unit can form the largest square matrix with the left, upper and upper left units. For example, a unit can form a matrix with a side length of 3 with the left, top, and top left units. That can also form a matrix with a side length of 2 and a side length of 1. So:
    • dp[i][j] = min(dp[i – 1][j], dp[i – 1][j – 1], dp[i][j – 1])+1 if matrix[i][j] == 1 else 0
  • Return answer:
    • ans = sum of all dp[i][j]

Solution:

/**
 * @param {number[][]} matrix
 * @return {number}
 */
var countSquares = function(matrix) {
    let row = matrix.length;
    let col = matrix[0].length;
    let dp = Array.from(new Array(row), () => new Array(col));
    let sum = 0;
    for (let i = 0; i < row; i++) {
        for (let j = 0; j < col; j++) {
            // Basic cases: 
            // dp[0][0], dp[i][0], dp[0][j] cases => has 1, form a square
            dp[i][j] = matrix[i][j];
            
            if (i && j && dp[i][j]) // Why? See Above
                dp[i][j] = Math.min(dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]) + 1;

            sum += dp[i][j];
        }   
    }
    return sum;
};

LeetCode 1143. Longest Common Subsequence (javascript)

Given two strings text1 and text2, return the length of their longest common subsequenceIf there is no common subsequence, return 0.

subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, "ace" is a subsequence of "abcde".

common subsequence of two strings is a subsequence that is common to both strings.

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Constraints:

  • 1 <= text1.length, text2.length <= 1000
  • text1 and text2 consist of only lowercase English characters.

Idea:

Dynamic Programing

Use dp[i][j] to represent the length of longest common sub-sequence of text1[0:i-1] and text2[0:j-1]
dp[i][j] = dp[i – 1][j – 1] + 1 if text1[i – 1] == text2[j – 1] else max(dp[i][j – 1], dp[i – 1][j])

Solution:

/**
 * @param {string} text1
 * @param {string} text2
 * @return {number}
 */
var longestCommonSubsequence = function(text1, text2) {
    // Use dp[i][j] to represent the length of longest common sub-sequence of text1[0:i-1] and text2[0:j-1]
    // dp[i][j] = dp[i – 1][j – 1] + 1 if text1[i – 1] == text2[j – 1] else max(dp[i][j – 1], dp[i – 1][j])
    let dp = Array.from(new Array(text1.length + 1), () => new Array(text2.length + 1));
    
    // final result dp[i + 1][j + 1] contains length of LCS  
    // for text1[0..i] and text2[0..j], so use <=
    for (let i = 0; i <= text1.length; i++) {
        for (let j = 0; j <= text2.length; j++) {
            // base case:
            if (i === 0 || j === 0) 
                dp[i][j] = 0;
            else if (text1[i - 1] === text2[j - 1])
                dp[i][j] = dp[i - 1][j - 1] + 1;
            else
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
        }
    }
    // dp[text1.length][text2.length] contains length of LCS  
    // for text1[0..text1.length-1] and text2[0..text2.length-1]
    return dp[text1.length][text2.length];
}

LeetCode 300. Longest Increasing Subsequence (javascript)

Given an integer array nums, return the length of the longest strictly increasing subsequence.

subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].

Example 1:

Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Example 2:

Input: nums = [0,1,0,3,2,3]
Output: 4

Example 3:

Input: nums = [7,7,7,7,7,7,7]
Output: 1

Constraints:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

Idea:

dp[i] represents the length of the longest increasing subsequence of nums[0...i]
dp[0] = 1
dp[i] = max(dp[j]'s) + 1 if j < i when nums[i] > nums[j]
result: find the max of all dp[i]'s

Solution:

/**
 * @param {number[]} nums
 * @return {number}
 */
var lengthOfLIS = function(nums) {
    let dp = new Array(nums.length);
    dp[0] = 1;
    for (let i = 0; i < nums.length; i++) {
        // local max
        let max = 0;
        for (let j = 0; j < i; j++) {
            if (nums[i] > nums[j]) {
                max = Math.max(dp[j], max);
            }
        }
        dp[i] = max + 1;
    }
    // result: find the max of all dp[i]'s
    return Math.max(...dp);
};

LeetCode 64. Minimum Path Sum (javascript)

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 100

Idea:

Dynamic Programing

save space: we just use the original grid to calcuate the min path sum
grid[i][j] represent the min path sum of i x j grid
grid[i][j] = get the min of previous grid(top/left) + current val

Solution:

/**
 * @param {number[][]} grid
 * @return {number}
 */
var minPathSum = function(grid) {
    // save space: we just use the original grid to calcuate the min path sum
    // grid[i][j] = min path sum of i x j grid
    let m = grid.length;
    let n = grid[0].length;
    
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            // grid[0][0] itself contains the min path sum
            if (i === 0 && j === 0) continue;
            // first row: grid[i][j] = previous grid(left) + current val
            if (i === 0) grid[i][j] += grid[i][j - 1];
            // first column: grid[i][j] = previous grid(top) + current val
            else if (j === 0) grid[i][j] += grid[i - 1][j];
            // grid[i][j] = get the min of previous grid(top/left) + current val
            else grid[i][j] += Math.min(grid[i][j - 1], grid[i - 1][j]);
        }
    }
    return grid[m - 1][n - 1];
}

LeetCode 62. Unique Paths (javascript)

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

Example 1:

Input: m = 3, n = 7
Output: 28

Example 2:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down

Example 3:

Input: m = 7, n = 3
Output: 28

Example 4:

Input: m = 3, n = 3
Output: 6

Constraints:

  • 1 <= m, n <= 100
  • It’s guaranteed that the answer will be less than or equal to 2 * 109.

Idea:

Dynamic Programing

dp[m][n] = unique paths of m x n grid
// base case:
dp[1][1] = 1; 
// dp[i][j] = top(unique paths) + left(unique paths)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];

Solution:

/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function(m, n) {
    // one row or one column dp[i][1] = dp[1][j] = 1; Let's fill them all 1
    let dp = Array.from(new Array(m), () => new Array(n).fill(1));
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            // dp[i][j] = top(unique paths) + left(unique paths)
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }
    return dp[m - 1][n - 1];
}

LeetCode 5. Longest Palindromic Substring (javascript)

Given a string s, return the longest palindromic substring in s.

Example 1:

Input: s = "babad"
Output: "bab"
Note: "aba" is also a valid answer.

Example 2:

Input: s = "cbbd"
Output: "bb"

Example 3:

Input: s = "a"
Output: "a"

Example 4:

Input: s = "ac"
Output: "a"

Constraints:

  • 1 <= s.length <= 1000
  • s consist of only digits and English letters (lower-case and/or upper-case),

Idea:

Dynamic Programing

dp[i][j] = if the substring from i to j is a palindrome = true
dp[i][j] = dp[i+1][j-1] and s[i] === s[j]
base case:
dp[i][i] = true; 
dp[i][i+1] = s[i] === s[i+1];
  • Time complexity : O(n2)
  • Space complexity : O(n2)

Solution:

var longestPalindrome = function(s) {
    let len = s.length;
    if (s === null || len === 1) return s;
    let dp = Array.from(new Array(len), () => new Array(len));
    let res = "";
    let max = 0;
    
    for (let j = 0; j < len; j++) {
        // remember i <= j
        for (let i = 0; i <= j; i++) {
            let isSame = s[i] === s[j];
            
            // one and two letters palindromes only check s[i] === s[j]
            // more than 2, check subset dp[][] && s[i] === s[j]
            dp[i][j] = j - i <= 2 ? isSame : dp[i + 1][j - 1] && isSame;
            
            // any new max palindrome, update max and longest result
            if (dp[i][j] && j - i + 1 > max) {
                max = j - i + 1;
                res = s.substring(i, j + 1);
            }
        }
    }
    return res;
}