Roman numerals are represented by seven different symbols: I
, V
, X
, L
, C
, D
and M
.
Symbol Value I 1 V 5 X 10 L 50 C 100 D 500 M 1000
For example, 2
is written as II
in Roman numeral, just two one’s added together. 12
is written as XII
, which is simply X + II
. The number 27
is written as XXVII
, which is XX + V + II
.
Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII
. Instead, the number four is written as IV
. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX
. There are six instances where subtraction is used:
I
can be placed beforeV
(5) andX
(10) to make 4 and 9.X
can be placed beforeL
(50) andC
(100) to make 40 and 90.C
can be placed beforeD
(500) andM
(1000) to make 400 and 900.
Given a roman numeral, convert it to an integer.
Example 1:
Input: s = "III" Output: 3
Example 2:
Input: s = "IV" Output: 4
Example 3:
Input: s = "IX" Output: 9
Example 4:
Input: s = "LVIII" Output: 58 Explanation: L = 50, V= 5, III = 3.
Example 5:
Input: s = "MCMXCIV" Output: 1994 Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.
Constraints:
1 <= s.length <= 15
s
contains only the characters('I', 'V', 'X', 'L', 'C', 'D', 'M')
.- It is guaranteed that
s
is a valid roman numeral in the range[1, 3999]
.
Idea:
- Accumulate the value of each symbol.
- If the current symbol is greater than the previous one, substract twice of the previous value. e.g. IX, 1 + 10 – 2 * 1 = 9
Solution:
- Time complexity: O(n)
- Space complexity: O(1)
/**
* @param {string} s
* @return {number}
*/
var romanToInt = function(s) {
let conversion = {"I": 1, "V":5,"X":10,"L":50,"C":100,"D":500,"M":1000};
let total = 0;
for (var i = 0; i < s.length; i++) {
// first symbol
total += conversion[s[i]];
// if current symbol is bigger than previous symbol
// subtract 2 times of the previous value
if (i > 0 && conversion[s[i]] > conversion[s[i - 1]])
total -= 2 * conversion[s[i - 1]];
}
return total;
};